博客
关于我
7-9 公路村村通(30 分) 最小生成树 需要再深入研究算法*******************
阅读量:703 次
发布时间:2019-03-21

本文共 1960 字,大约阅读时间需要 6 分钟。

为了解决这个问题,我们需要找到最低成本的方法,使得所有城镇通过公路连接。这个问题可以用最小生成树算法来解决,具体使用Kruskal算法来选择尽可能少成本的边。

方法思路

  • 问题分析:我们需要将城镇通过道路连接起来,使得每个城镇都能到达其他城镇,并且总成本最低。这个问题可以转化为在一个图中找到最小生成树。
  • Kruskal算法:这个算法通过排序所有边并逐步选择边来构建生成树。具体步骤如下:
    • 初始化并查集(Union-Find)结构,每个城镇单独成一个集合。
    • 将所有可能的边按成本从低到高排序。
    • 遍历这些边,尝试将每条边的两个端点合并到一个集合中。如果两个端点已经在同一个集合中,跳过这条边。
    • 继续到所有的节点都连通为止,或者确定无法连通。
  • 终止条件:一旦所有节点连通,或者处理了所有边,返回总成本。如果无法连接,返回-1。
  • 解决代码

    import sysclass UnionFind:    def __init__(self, n):        self.parent = list(range(n + 1))        self.rank = [1] * (n + 1)        def find(self, x):        if self.parent[x] != x:            self.parent[x] = self.find(self.parent[x])        return self.parent[x]        def union(self, x, y):        x_root = self.find(x)        y_root = self.find(y)        if x_root == y_root:            return False  # Already in the same set        # Merge smaller rank into larger rank        if self.rank[x_root] > self.rank[y_root]:            self.parent[y_root] = x_root        else:            self.parent[x_root] = y_root            if self.rank[x_root] == self.rank[y_root]:                self.rank[y_root] += 1        return Truedef main():    input = sys.stdin.read().split()    idx = 0    n = int(input[idx])    idx += 1    m = int(input[idx])    idx +=1    edges = []    for _ in range(m):        u = int(input[idx])        idx +=1        v = int(input[idx])        idx +=1        w = int(input[idx])        idx +=1        edges.append( (w, u, v) )    edges.sort()    uf = UnionFind(n)    total = 0    count = 0    for (w, u, v) in edges:        if uf.find(u) != uf.find(v):            uf.union(u, v)            total += w            count += 1            if count == n -1:                break    if count == n -1:        print(total)    else:        print(-1)if __name__ == "__main__":    main()

    代码解释

    • UnionFind类:用于并查集操作,包括查找和合并集合。
    • 读取输入:读取城镇数和道路信息,存储在边列表中。
    • 排序边:按成本从小到大排序边。
    • 处理边:使用Kruskal算法,逐步选择连接边,直到所有城镇连通或所有边处理完。
    • 终止条件检查:如果所有城镇连通,输出总成本;否则,输出-1。

    这个方法确保了在最低成本的情况下连接所有城镇,使用了Kruskal算法的高效性和可靠性。

    转载地址:http://wcoez.baihongyu.com/

    你可能感兴趣的文章
    NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
    查看>>
    NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
    查看>>
    nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
    查看>>
    NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
    查看>>
    NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
    查看>>
    NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
    查看>>
    Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
    查看>>
    NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
    查看>>
    NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
    查看>>
    NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
    查看>>
    NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
    查看>>
    NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
    查看>>
    NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
    查看>>
    NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
    查看>>
    NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
    查看>>
    NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
    查看>>
    NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
    查看>>
    NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
    查看>>
    NIFI大数据进阶_实时同步MySql的数据到Hive中去_可增量同步_实时监控MySql数据库变化_操作方法说明_01---大数据之Nifi工作笔记0033
    查看>>